
9/24/15	

1	

+

Class Examples
Basic Data Structures

+
Fraction Class (gcd)

n  In order to reduce a fraction, we first need to find the
Greatest Common Divisor

n  Euclid's method is a recursive way to solve this:
n  Base case: gcd(a,0) is a

n  Recursive case: gcd(a,b) is gcd(b,a mod b)

n  where

n  Exercise:
n  write a recursive method to do gcd

n  write an iterative method to do gcd

9/24/15	

2	

+
CoffeeDate

n  Implement the Cup and Contents class (see below). Create a
driver class called CoffeeDate that asks a user for the first
person's size and type of drink. For size only allow them to
ask for an "eensy" (8 oz.), "so-so"(12 oz.), or "mega" (20 oz.).
For type only allow "Coffee" or "Tea". Your last line of code in
your main method should be:

n  System.out.println("Here is your " + cup1 + " and your " +
cup2);

+
Coffee Date

n  Cup
n  attributes

n  contents

n  strength
n  capacity

n  operations

n  fill
n  empty

n  toString

n  Contents
n  attributes

n  type

n  amount
n  operations

n  getType

n  getAmount
n  setType

n  setAmount

9/24/15	

3	

+
Basic Data Structures

n  Array
n  what is an array?

+
Basic Data Structures

n  Array
n  fixed size

n  constant time access if you
know the address

n  cost to grow

n  size of array, n, time to grow
the array

n  have to manage/discard
smaller array

n  no enforcement of order

9/24/15	

4	

+
Basic Data Structures

n  Linked List
n  what is a linked list?

+
Basic Data Structures

n  Linked List
n  dynamic size

n  linear time to access an
element

n  cost to grow

n  constant to linear time

n  cost to shrink

n  constant to linear time

n  have to manage single node
removal

n  no enforcement of order

9/24/15	

5	

+
Basic Data Structures

n  Arrays
n  fixed size

n  constant time access if you
know the address

n  cost to grow

n  size of array, n, time to grow
the array

n  have to manage/discard
smaller array

n  no enforcement of order

n  Linked List
n  dynamic size

n  linear time to access an
element

n  cost to grow

n  constant to linear time

n  cost to shrink

n  constant to linear time

n  have to manage single node
removal

n  no enforcement of order

+
Dynamic Array Class

n  Features:
n  Can be an array of any class Type

n  will automatically grow when adding past the current limit

9/24/15	

6	

+
Linked List Class

n  Has a "head" Node

n  each Node has
n  an Object/value of any type
n  a link to the next Node

n  Optionally has a "tail" Node

n  has a method to add
n  this could be addressed

n  has a method to remove
n  this is typically by position
n  could be by value

+
OOP Terminology

n  Class

n  Object

n  Instance

n  Instance Variable vs. Class Variable

9/24/15	

7	

+
OOP Terminology

n  Class

n  Object

n  Instance

n  Instance Variable vs. Class Variable
n  public int height;

n  vs.

n  public static int numCircles; // the number of circles instantiated
by the circle class

+
OOP Terminology

n  Class

n  Object

n  Instance

n  Instance Variable vs. Class Variable
n  public int height;

n  vs.

n  public static int numCircles; // the number of circles instantiated
by the circle class

n  Instance Method vs. Class Method

9/24/15	

8	

+
OOP Terminology

n  Class

n  Object

n  Instance

n  Instance Variable vs. Class Variable
n  public int height;
n  vs.
n  public static int numCircles; // the number of circles instantiated by the circle

class

n  Instance Method vs. Class Method
n  public int size();
n  vs.
n  public static void main(String[]

+
Java Class design best practices

n  As a general rule:
n  Class variables and Class methods should not mix with instance

variables and instance methods.

9/24/15	

9	

+
Java Class design best practices

n  As a general rule:
n  Class variables and Class methods should not mix with instance

variables and instance methods.

n  However, sometimes Classes that are instantiated as objects will
have a small number of class methods for conversion from other
types such as the wrapper classes' valueOf() methods

+
Java Class design best practices

n  As a general rule:
n  Class variables and Class methods should not mix with instance

variables and instance methods.

n  However, sometimes Classes that are instantiated as objects will
have a small number of class methods for conversion from other
types such as the wrapper classes' valueOf() methods

n  The Arrays class just uses class variables

9/24/15	

10	

+
Java Class design best practices

n  As a general rule:
n  Class variables and Class methods should not mix with instance

variables and instance methods.

n  However, sometimes Classes that are instantiated as objects will
have a small number of class methods for conversion from other
types such as the wrapper classes' valueOf() methods

n  The Arrays class just uses class variables

n  The String, Integer, Float, Double, Byte, Character, Long, and
short all have valueOf() methods that return that type given
another type.

+
Java Class design best practices

n  As a general rule:
n  Class variables and Class methods should not mix with instance

variables and instance methods.

n  However, sometimes Classes that are instantiated as objects will
have a small number of class methods for conversion from other
types such as the wrapper classes' valueOf() methods

n  The Arrays class just uses class variables

n  The String, Integer, Float, Double, Byte, Character, Long, and
short all have valueOf() methods that return that type given
another type.
n  Example static Double valueOf(String s)

9/24/15	

11	

+
Java packages

package cs206.day7;

public class LinkedList {

}

Stored in:

cs206/day7/LinkedList.java

to compile: javac cs206.day7.LinkedList.java

to run: java cs206.day7.LinkedList

+
Abstract Data Type

n  What is an abstract Data Type?

9/24/15	

12	

+
Abstract Data Type

n  What is an abstract Data Type?

n  A Data Type that specifies function, but does not specify how
to do it.

+
Abstract Data Type

n  What is an abstract Data Type?

n  A Data Type that specifies function, but does not specify how
to do it.

n  Encapsulates internal details of a data type/structure
and provides an interface/operations to use the data
type.

9/24/15	

13	

+
Abstract Data Type

n  What is an abstract Data Type?

n  A Data Type that specifies function, but does not specify how
to do it.

n  Encapsulates internal details of a data type/structure
and provides an interface/operations to use the data
type.

n  Typically defined using classes, but an interface can be
used as well.

+
Example: LinkedList

n  abstract class LinkedList<E>{
 protected Node<E> head;
 public abstract void add(E element);
 public abstract E removeLast();
 public Node<E> getHead() {
 return head;
 }
}

9/24/15	

14	

+
Example: LinkedList

n  abstract class LinkedList<E>{
 protected Node<E> head;
 public abstract void add(E element);
 public abstract E removeLast();
 public Node<E> getHead() {
 return head;
 }
}

n  public interface LinkedList<E>{
 public void add(E element);
 public E removeLast();
 public Node<E> getHead();
}

+
Example: LinkedList

n  abstract class LinkedList<E>{
 protected Node<E> head;
 public abstract void add(E element);
 public abstract E removeLast();
 public Node<E> getHead() {
 return head;
 }
}

n  public interface LinkedList<E>{
 public void add(E element);
 public E removeLast();
 public Node<E> getHead();
}

But what are all of
these E's?

9/24/15	

15	

+
Example: LinkedList

n  abstract class LinkedList<E>{
 protected Node<E> head;
 public abstract void add(E element);
 public abstract E removeLast();
 public Node<E> getHead() {
 return head;
 }
}

n  public interface LinkedList<E>{
 public void add(E element);
 public E removeLast();
 public Node<E> getHead();
}

But what are all of
these E's?

E is just a variable to
say any one type is
allowed here.

+
Implement Linked List

n  Class:
public class Queue extends LinkedList<Integer> {
 public abstract void add(E element){ }
 public abstract E removeLast() { }
}

9/24/15	

16	

+
Implement Linked List

n  Class:
public class Queue extends LinkedList<Integer> {
 public abstract void add(E element){ }
 public abstract E removeLast() { }
}

n  Interface
public class Queue implements LinkedList<Double> {
 public void add(E element) { }
 public E removeLast() { }
 public Node<E> getHead() { }
}

